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Accounting methods that center scientific best 
practices are the backbone of high-quality carbon 
projects.However, while scientific advancements 
have markedly improved carbon accounting to 
date, the continuous evolution of practices can 
make it difficult for buyers to understand which 
practices are high-quality when purchasing credits. 

The Science Decoders are a series of explainers 
on current scientific best practices and gaps for 
carbon projects developed in seven common 
Natural Climate Solutions (NCS)pathways: 
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This first Decoder provides an overview of the scientific 
approaches that Agricultural Land Management (ALM) 
projects apply and highlights the best practices among 
them. We cover the ways in which projects define their 
baselines, measure and quantify emission reductions 
and removals, estimate uncertainty, and monitor project 
activities and permanence. These best practices are then 
compared to ALM methodologies in the market today. 
With this summary, buyers of high-quality carbon credits 
can better evaluate whether projects are effectively 
deploying rigorous scientific tools and approaches. They 
can also identify priority areas for research investment. 

1. Avoided Conversion of Grasslands and Shrublands (ACoGS)

2. Afforestation, Reforestation and Revegetation (ARR)

3. Agricultural Land Management (ALM)

4. Blue Carbon

5. Improved Forest Management (IFM)

6. Reduced Emissions from Deforestation and Degradation (REDD)

7. Wetlands Restoration and Conservation (WRC)

Natural Climate 
Solutions (NCS) 
pathways
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What are ALM 
Carbon Projects?

Agricultural Land Management (ALM) projects generate carbon credits by implementing improved 
management practices on agricultural lands, including croplands and grazing lands. These improved 

practices depend on the context of the specific project but may include activities such as: 

These activities generate credits primarily from changes 
in four greenhouse gas pools and sources: 

Carbon dioxide (CO2) 
emissions removed from the 

atmosphere by plants and 
sequestered as soil organic 

carbon (SOC).

Carbon dioxide (CO2) 
emissions removed from 
the atmosphere by plants 

and sequestered as woody 
biomass.

Nitrous oxide (N2O) 
emissions reduced 

from soils to the 
atmosphere.

Methane (CH4) 
emissions reduced 

from soils to the 
atmosphere.

Improved 
cropping 
practices

(e.g. planting 
cover crops)

Improved  
grazing practices

(e.g. adaptive 
multi-paddock 

grazing)

Agroforestry 
practices

(e.g. planting 
trees alongside 

crops)

Reduced soil 
disturbance

(e.g. reducing 
or eliminating 

tillage)

Improved 
nutrient 

management
(e.g. precision 
fertilizer use)

Improved water 
management
(e.g. furrow-

irrigation of rice 
paddies) Avoided crop 

residue burning
(e.g. mulching 
crop residues 

and applying as 
fertilizer)

FIGURE 1: Examples of project activities in ALM carbon projects and the GHG pools and sources they impact.
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High-quality ALM carbon projects identify and quantify emissions from all 
pools and sources likely to be affected by the project activity. This list of 

GHG pools and sources is called the Project GHG Boundary. Once this list is 
finalized, high-quality ALM carbon projects should leverage scientific best 

practices to achieve two fundamental tasks:

1.
Monitoring the 

management practices 
implemented before 
and after the project 

start date.

2.
Quantifying GHG 

emissions reductions 
and removals under 

the baseline and 
project scenarios.
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Monitoring 
Management 
Practices

Carbon projects effectively represent climate-positive behavior change 
that is driven by market incentives. It is therefore essential to monitor 
ALM practices before and after the implementation of a carbon project to 
provide confidence to a buyer both that a practice change has been made 
and that the change is a result of their purchase. This documentation is a 
critical component of a project’s demonstration of additionality relative to 
a business-as-usual baseline scenario.

Credits in high-quality ALM projects are quantified as the net impact 
of improved management practices on GHG emissions relative to a 
counterfactual baseline scenario in which the project was not implemented. 
For most ALM projects, the most credible baseline is usually the continuation 
of the historical practices implemented in the 3-5 years leading up to the 
project start date. For example, if a project aims to incentivize the adoption 
of cover crops to a conventional crop rotation, the baseline scenario 
should represent the continuation of the conventional crop rotation and its 
associated GHG emissions without the planting of cover crops. 

1.
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Detailed data on ALM practices are therefore needed for pre-project years as well as the duration of 
the project itself. When changes in impermanent carbon pools like SOC are credited, management 
data beyond a project’s crediting period is needed to monitor for potential reversals. The data 
necessary to achieve these monitoring requirements includes things like:

• Digital field boundaries as fundamental units that represent the specific areas where project 
activities are implemented. High-quality field boundaries for ALM carbon projects therefore 
exclude areas where project activities aren’t implemented (e.g. roads, water bodies, buildings, 
etc.)

• Annual records of crops grown for each field boundary, including planting and harvest dates.
• Annual tillage, fertilizer, and irrigation records for each field boundary, including event dates, 

tillage depths, fertilizer application rates, and irrigation amounts.
• Livestock grazing records for each field boundary, including stocking rates, grazing dates, and 

manure management practices.

These data can be difficult and costly for land managers to produce. Sometimes they don’t even 
exist. To relieve this burden, many ALM carbon projects use remote sensing tools to provide data 
that land managers cannot or to independently verify the data they do have. Remote sensing tools 
use machine learning algorithms and ground-truth datasets to interpret publicly available satellite 
data and identify specific ALM practices at a fine scale. Many ALM practices can be accurately 
detected by remote sensing at the field-level, including:

• Crop type (cash crops and cover crops), planting date, and harvest/termination date (Kussul 
et al. 2017).

• Tillage intensity (inferred by crop residue cover after harvest/termination) (Zheng et al. 
2014).

• Irrigation method (flood duration in rice paddies) (Karthikeyan et al. 2020).

Some ALM practices are not reliably monitored by remote sensing, such as:

• Nutrient management (fertilizer type, application rate, application date)
• Grazing management (stocking density, grazing duration)

All remote sensing tools have inherent uncertainties and can occasionally make incorrect 
conclusions. High-quality ALM carbon projects that use remote sensing tools to fill data gaps for 
land managers should therefore embed these tools in a larger QA/QC process that ensures errors 
can be identified and resolved. As part of this process, projects should transparently inform land 
managers what data is being remotely sensed on their lands and give them the opportunity to 
review and identify data that may be inaccurate.  
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TIPS FOR BUYERS: MONITORING

• Ask how geospatial boundary data were obtained and edited to 
ensure that only the lands implementing the project activities 
were included in the project area. Ask to see several example 
boundaries and overlay them on a satellite map to verify that the 
entire project area appears to be agricultural land. 

• Ask how management practices for both pre-project, during-
project, and post-project years have been/will be monitored. 
Where remote sensing tools are used to fill data gaps:

• Ask for a report on the accuracy of the tools for the data they 
provide. Have they been tested in the project area? What is 
their false positive rate? What is their false negative rate?

• Ask to see the project’s QA/QC process for identifying and 
resolving errors in the application of the remote sensing 
tools. Ensure that the QA/QC process includes both a way 
for land managers to contribute their own data and a way to 
independently verify those data.
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Quantification 
of Emissions 
Reductions 
and Removals

2.

A core element of all carbon projects is the accurate quantification of 
the net GHG emissions reductions and removals achieved by a project 
while conservatively accounting for uncertainty in that number. This 
project-wide number is the sum of the project’s impact on all GHG 
pools and sources identified in the Project GHG Boundary. Different 
GHG pools and sources often require different quantification methods to 
accurately estimate a project’s impact. Different quantification methods 
include different types of uncertainty. High quality ALM carbon projects 
transparently outline both the quantification methods and types of 
uncertainty accounted for in all credited GHG sources and pools. 
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Quantification 
Method

Types of 
Uncertainty

SOC 
Removals

Woody 
Biomass 

Removals

Soil N2O 
Emissions

Soil CH4 
Emissions

1

Measure  
and Model

• Model prediction 
error

• Sample error
• Measurement 

error

X

2

Measure and 
Remeasure

• Sample error
• Measurement 

error
X X

3

Model Only

• Model prediction 
error

• Sample error
X X

4

Default Emission 
Factors

• Prediction error X

TABLE 1: The different quantification methods used to estimate GHG pools and sinks and their associated types of 
uncertainty in high-quality ALM carbon projects.

A Measure and Model approach measures SOC stocks at the start of a project and then models their 
subsequent changes under both the baseline and project scenarios. Projects should account for model 
prediction error, sample error, and measurement error. Periodic re-measurement of SOC stocks should be 
done to re-calibrate the chosen model over time. See the GHG Modeling section below for more details.

A Measure and Remeasure approach measures SOC and woody biomass stocks at the start of a project and 
again over time in both the project area and baseline control sites. Projects should account for sample error 
and measurement error. See the SOC Measurement section below for more details.

A Model Only approach models Soil N2O and CH4 emissions under both the baseline and project scenarios. 
Projects should account for model prediction error and sample error. In-situ measurements of these fluxes 
are not expected nor required as long as models are appropriately validated (see GHG Modeling section 
below). Note that this approach is NOT considered best practice for SOC removals.

A Default Emission Factor approach quantifies emissions using simple formulas published by the International 
Panel on Climate Change (IPCC) for use in national GHG inventories. While these formulas often contain some 
prediction error, the data necessary to quantify that error is infrequently reported. Most projects therefore 
assume this error to be zero, which is acceptable for high-quality projects unless good data is available.

1

2

3

4
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High-quality ALM carbon projects should use the same quantification methods to 
quantify emissions and removals under both the baseline and project scenarios for 
the duration of the project’s crediting period. Projects that use different quantification 
methods for baseline versus project scenarios or make assumptions that emissions 
or removals under one scenario are “conservatively” equal to 0 (e.g. baseline SOC 
removals = 0) should be considered lower quality. Baseline scenarios should be dynamic 
and reflect the emissions and removals that would have occurred during the project 
years had the project not been implemented. Using the same tools and methods for 
quantifying emissions and removals under each scenario ensures consistent carbon 
accounting that maintains the integrity of a dynamic baseline scenario while also 
reducing the uncertainty in the credits generated by the project (Zhou et al. 2023).

BOX 1: TYPES OF UNCERTAINTY

• Model prediction error resulting from inaccurate model 
predictions of measured data (e.g. model predictions that are 
biased or have low precision).

• Sample error resulting from measuring or modeling only a 
portion of the project area (e.g. sampling one out of every five 
hectares).

• Measurement error of alternative measurement methods 
relative to established methods (e.g. in-situ soil spectroscopy of 
SOC% and bulk density relative to traditional lab analysis).
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SOC MEASUREMENT

SOC stocks (the mass of organic carbon in the soil) should always be measured both at the start 
of an ALM project and periodically (roughly every 5 years) over the project’s lifetime. The initial 
measurement represents the shared starting point for the baseline and project scenarios, which 
diverge from the initial SOC stock once the project starts.

SOC stocks should be measured using a stratified random sampling design. This approach splits a 
project area into small, homogenous units to reduce the measured variation in SOC stocks within 
each stratum. Soil samples should be taken and analyzed to enable the subsequent calculation of SOC 
stocks and changes in SOC stocks. The sampling density (number of samples per unit area) within 
each stratum should be chosen to balance the tradeoff between sampling costs and reductions in 
credits due to sample error (see above). The optimal density will depend on the specific geography 
and the project activities being credited.

SOC stocks at a single point in time are calculated using the following equation:

• SOC Stock is the mass of SOC per unit area to the specified depth (tonnes/ha).
• SOC% is the percent SOC content of the fine soil portion (<2mm diameter), ideally measured 

via dry combustion.
• BD is the bulk density of the fine soil portion (g fine soil /cm3 fine soil). The soil portions 

(fine vs coarse) represented by bulk density measurements can vary among labs - explicit 
definition is critical. 

• CF is the coarse fragment content by volume of the coarse soil portion (>2mm diameter) (0-1).
• Depth is the depth of the sampled soil core (cm). Depth should always be at least 30 cm and 

ideally 50 cm. Some ALM practices like no-till can redistribute SOC within the soil profile. 
Deeper sampling can catch this redistribution and ensure that SOC stock changes aren’t 
mistakenly overstated (Smith et al. 2020).

The current best practice for collecting these data is via the collection of physical soil samples 
that are transported to an accredited soil lab where they are processed and analyzed. This process 
is time consuming and expensive and can present a cost barrier to many projects, yet the data 
are crucial to the integrity of high-quality ALM carbon projects. The research, development, and 
commercialization of technologies that reduce these costs by measuring this required soil data either 
in the field or via remote sensing represents a huge opportunity to overcome cost barriers (Smith et 
al. 2020). Buyers of high-quality ALM carbon credits that aren’t satisfied with the current volume of 
credits available may consider investing in research efforts to drive down SOC measurement costs.

SOC Stock = SOC% × BD × (1 - CF) × Depth
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Projects that use Measure and Remeasure approaches for quantifying SOC removals must take 
care when reporting SOC stock changes to ensure that these changes are due only to changes in 
SOC% and not bulk density. Changes in bulk density may occur when projects incentivize activities 
like reduced tillage or improved grazing management that loosen or compact the soil, and a failure 
to account for these changes can cause SOC removals to be under or overestimated (von Haden 
et al. 2020). High-quality ALM carbon projects should therefore report SOC stock changes using 
bulk density corrections, also commonly referred to as an equivalent soil mass. 

FIGURE 2: This figure shows the perils of failing to account for changes in bulk density in an example improved 
grazing project (project scenario only). Note how bulk density (BD) has increased in Year 5 due to more livestock 

while SOC% has remained the same. When SOC stocks are calculated using Equation 1, they are mistakenly found 
to be higher in Year 5 than Year 0 when, in reality, a larger mass of soil was sampled. It is essential to compare SOC 

stocks for the same soil mass between years to avoid this error.

SOC% = 2%
BD = 1.2 g/cm3

SOC Stock = 72 tonnes/haSOC Stock = 60 tonnes/ha

SOC% = 2%
BD = 1.0 g/cm3

30 cm 30 cm

Year 0 Year 5
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GHG MODELING

Models used to simulate the effects of the project activities on GHG reductions and 
removals should always be calibrated and validated against measured datasets of 
the same GHGs. Model validation should transparently report model prediction error 
and propagate that error to subsequent model simulations. High-quality ALM carbon 
projects will have publicly available model validation reports that include all data 
used for calibration and validation and intuitively display them opposite model 
predictions as simple scatterplots. Models used in projects to quantify SOC removals 
should be validated based on their ability to predict SOC stock changes and not simply 
SOC stocks.

Very specific ground-truth data are needed to validate models used in high-quality 
carbon projects. The best data come from long-term studies (>5 years) where repeated 
measurements of the target GHG source or pool are made over time in paired plots 
where both the improved project activity and business-as-usual baseline activity are 
implemented. Most of the studies that meet these criteria are from cropping systems 
in North America and Europe with limited applications to other project types (Reinhart 
et al. 2022). Studies that don’t meet these criteria often only measure GHG sources 
and pools at a single point in time, limiting their utility for model validation. Buyers of 
high-quality ALM carbon credits that aren’t satisfied with the current volume of credits 
available may consider investing in research studies to generate the data needed to 
rigorously validate process-based GHG models. 

ACCOUNTING FOR UNCERTAINTY

High quality projects that quantify multiple sources of uncertainty should conservatively 
account for the impact of that uncertainty on the number of credits issued to the 
project. Proper accounting for uncertainty creates a probability distribution around a 
point estimate of a project’s climate impact. The final credit volume issued to a project 
can then be selected from this distribution to represent a conservative issuance based 
on the reported uncertainties. For example, Verra VM0042 requires projects to take 
uncertainty deductions at the 33rd percentile of a project’s uncertainty distribution 
(see figure below). This translates directly to a 33% probability that the project is 
over crediting and a 67% probability that the project is under crediting. Because the 
uncertainty distribution is created from the uncertainty in the project’s quantification 
methods, this crediting approach incentivizes projects that reduce uncertainty through 
steps like reducing model prediction error (improving model validation) or reducing 
sample error (collecting more samples). 
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FIGURE 3: Example probability distribution that illustrates how uncertainty should be conservatively accounted for.  
The project’s average credit volume is ~4.1 tCO2e/unit area, but it is conservatively issued 3.6 tCO2e/unit area – 

reflecting a 67% probability that the true climate impact of the project exceeds the credited impact.
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TIPS FOR BUYERS: QUANTIFICATION

• Ask for a report summarizing all GHG sources and pools credited by the project, 
their associated quantification methods, and the types of uncertainty that are 
accounted for (Table 1)
• Ensure the same quantification methods are used for both the baseline and 

project scenarios for each GHG source or pool.

• Ensure that the final credit issuance conservatively accounts for uncertainty by 
issuing less than the average expected credit volume of the project.

• For projects measuring SOC stocks and stock changes:
• Ask if the project area has been stratified prior to collecting soil samples.
• Ask if equivalent soil mass methods were used when calculating SOC stock 

changes.
• Ask about sampling density and if sample error is accounted for in the final 

credit volume.
• If alternative measurement methods are used, ask what the error in those 

methods is and if it is accounted for in the final credit issuance.

• For projects modeling GHG emissions:
• Ask to see the project’s model validation report, and ensure it shows a simple 

scatterplot of model performance for data from previous studies of the 
project activity.
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ALM Methodology Review
Many carbon standards offer methodologies to credit ALM carbon projects, and there is substantial variation in the minimum requirements for the use of scientific tools across ALM methodologies.

The table below summarizes the extent to which existing methodologies published by the leading voluntary carbon standards require projects to use the scientific best practices discussed in this article. 

Methodology Year Published
Requires Best Practices for:

Practice 
Monitoring

Baseline 
Quantification SOC Measurement GHG Modeling Uncertainty 

Accounting

VCS VM0022: Quantifying N2O Emissions Reductions in Agricultural 
Crops through Nitrogen Fertilizer Rate Reduction v1.1 2013 No Yes N/A N/A No

VCS VM0026: Methodology for Sustainable Grassland Management v1.1 2021 Yes No No No No

VCS VM0032: Methodology for the Adoption of Sustainable 
Grasslands through Adjustment of Fire and Grazing v1.0 2015 Yes No No No No

VCS VM0042: Methodology for Improved Agricultural Land Management v2.0 2023 Yes Yes Yes Yes Yes

CAR U.S. Nitrogen Management Protocol v2.1 2021 No Yes N/A No No

CAR U.S. Rice Cultivation Protocol v1.1 2013 Yes Yes No No Yes

CAR U.S. Soil Enrichment Protocol v1.1 2022 Yes Yes Yes Yes Yes

Gold Standard Methodology for Methane Emission Reduction by 
Adjusted Water Management Practice in Rice Cultivation v1.0 2023 Yes Yes N/A N/A No

Gold Standard Soil Organic Carbon Framework Methodology v1.0: Activity 
Module for Increasing Soil Carbon Through Improved Tillage Practices v1.0 2020 Yes No No No No

Gold Standard Soil Organic Carbon Framework Methodology v1.0: Activity Module 
for Application of Organic Soil Improvers from Pulp and Paper Mill Sludges v1.0 2022 Yes No No No No

TABLE 2: A summary of popular ALM methodologies and whether or not they require (Yes/No) projects to 
follow the best practices discussed in this report. This table is not intended to be an evaluation of all projects 
developed under a given methodology. Rather, it is intended to identify methodologies whose projects are most 
likely to be high-quality given the minimum methodological requirements. Some high-quality projects may be 
developed under less rigorous methodologies if they choose to exceed their minimum requirements. 

TIPS FOR BUYERS: METHODOLOGIES

VCS VM0042 v2.0 and CAR U.S. SEP v1.1 require 
projects to meet current scientific best practices. 

Conduct extra due diligence on projects 
verified under other methodologies to ensure 
they meet a similar level of rigor.
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